Представление "знаний" в компьютере

.

Что такое представление знаний?

Представление знаний — вопрос, возникающий в когнитологии (науке о мышлении), в информанике и в исследованиях искусственного интелекта. В когнитологии он связан с тем, как люди хранят и обрабатывают информацию. В информатике — с подбором представления конкретных и обобщённых знаний, сведений и фактов для накопления и обработки информации в ЭВМ. Главная задача в искусственном интеллекте (ИИ) — научиться хранить зния таким образом, чтобы программы могли осмысленно обрабатывать их и достигнуть тем подобия человеческого интелекта.

Под термином «представление знаний» чаще всего подразумеваются способы представления знаний, ориентированные на автоматическую обработку современными компьютерами, и, в частности, представления, состоящие из явных объектов и из суждений или утверждений о них. Представление знаний в подобной явной форме позволяет компьютерам делать дедуктивные выводы из ранее сохранённого знания.

Big image

В настоящее время разработано множество моделей представления знаний. Имея обобщенное название, они различаются по идеям, лежащим в их основе, с точки зрения математической обоснованности. Типы моделей показаны на рисунке.

Первый подход, называемый эмпирическим, основан на изучении принципов организации человеческой памяти и моделировании механизмов решения задач человеком.

Второй можно Подход определить как теоретически обоснованный, гарантирующий правильность решений. Он в основном представлен моделями, основанными на формальной логике.

Big image

ИСТОРИЯ

Для структурирования информации, а также организации баз знаний и экспертных систем были предложены несколько способов представления знаний. Одно из них — представление данных и сведений в рамках логической модели баз знаний.

В 1960-х и начале 1980-х были предложены, и с переменным успехом опробованы многочисленные методы представления знаний, например эвристические вопросно-ответные системы, нейросети, доказательство теорем и экспертные системы. Главными областями их применения в то время были медицинская диагностика (MYCIN) и игры (например, шахматы).

В 1980-х годах появились формальные компьютерные языки представления знаний. Основные проекты того времени пытались закодировать (занести в свои базы знаний) огромные массивы общечеловеческого знания. Например, в проекте «Сус» была обработана большая энциклопедия, и кодировалась не сама хранящаяся в ней информация, а знания, которые потребуются читателю, чтобы понять эту энциклопедию: наивная физика, понятия времени, причинности и мотивации, типичные объекты и их классы. Проект Сус развивается компанией Сусorp,Inc.; большая часть (но не вся) их базы свободно доступна.

Данная работа привела к более точной оценке сложности задачи представления знаний. Одновременно в математической лингвистике были созданы гораздо более объёмные базы языковой информации, и они, вместе с огромным приростом скорости и объёмов памяти компьютеров сделали более глубокое представление знаний более реальным.

Было также разработано несколько языков программирования, ориентированных на представление знаний. Пролог (разработанный в 1972 году,но получивший популярность значительно позже) описывает высказывания и основную логику, и может производить выводы из известных посылок. Ещё больше нацелен на представление знаний язык KL-ONE (1980-е).

В области электронных документов были разработаны языки, явно выражающие структуру хранимых документов, такие как SGML(а впоследствии — XML). Они облегчили задачи поиска и извлечения информации, которые в последнее время всё больше связаны с задачей представления знаний. Большой интерес проявляется к технологии семантической паутины , в которой основанные на XML языки представления знаний, такие как RDF, Карта тем и другие используются для увеличения доступности компьютерным системам информации, хранящейся в сети.

Представление чисел и любой информации в компьютере. Цифровой Майнкрафт [5]