Ecology Cycles

By:Austin Wolfe

Carbon Cycle

The carbon cycle is the biogeochemical cycle by which carbon is exchanged among the biosphere, pedosphere, geosphere, hydrosphere, and atmosphere of the Earth. Along with the nitrogen cycle and the water cycle, the carbon cycle comprises a sequence of events that are key to making the Earth capable of sustaining life; it describes the movement of carbon as it is recycled and reused throughout the biosphere.


The global carbon budget is the balance of the exchanges (incomes and losses) of carbon between the carbon reservoirs or between one specific loop (e.g., atmosphere ↔ biosphere) of the carbon cycle. An examination of the carbon budget of a pool or reservoir can provide information about whether the pool or reservoir is functioning as a source or sink for carbon dioxide. The carbon cycle was initially discovered by Joseph Priestley and Antoine Lavoisier, and popularized by Humphry Davy.

Big image

Nitrogen Cycle

The nitrogen cycle is the process by which nitrogen is converted between its various chemical forms. This transformation can be carried out through both biological and physical processes. Important processes in the nitrogen cycle include fixation, mineralization, nitrification, and denitrification. The majority of Earth's atmosphere (78%) is nitrogen making it the largest pool of nitrogen. However, atmospheric nitrogen has limited availability for biological use, leading to a scarcity of usable nitrogen in many types of ecosystems. The nitrogen cycle is of particular interest to ecologists because nitrogen availability can affect the rate of key ecosystem processes, including primary production and decomposition. Human activities such as fossil fuel combustion, use of artificial nitrogen fertilizers, and release of nitrogen in wastewater have dramatically altered the global nitrogen cycle.


A 2011 study found that nitrogen from rocks may also be a significant source of nitrogen, that had not previously been included

Big image

Phosphorus Cycle

The phosphorus cycle is the biogeochemical cycle that describes the movement of phosphorus through the lithosphere, hydrosphere, and biosphere. Unlike many other biogeochemical cycles, the atmosphere does not play a significant role in the movement of phosphorus, because phosphorus and phosphorus-based compounds are usually solids at the typical ranges of temperature and pressure found on Earth. The production of phosphine gas occurs only in specialized, local conditions.


On the land, phosphorus (chemical symbol, P) gradually becomes less available to plants over thousands of years, because it is slowly lost in runoff. Low concentration of P in soils reduces plant growth, and slows soil microbial growth - as shown in studies of soil microbial biomass. Soil microorganisms act as both sinks and sources of available P in the biogeochemical cycle. Locally, transformations of P are chemical, biological and microbiological: the major long-term transfers in the global cycle, however, are driven by tectonic movements in geologic time.


Humans have caused major changes to the global P cycle through shipping of P minerals, and use of P fertilizer, and also the shipping of food from farms to cities, where it is lost as effluent.

Big image