История развития науки - Логика

Основы логики

История развития науки - Логика

Появление логики в качестве разработанного анализа принципов умозаключений имеет отношение исключительно к трём локальным цивилизациям, а именно: Китай, Индия и Древняя Греция. Из них только трактовка логики в древнегреческой философии, детально рассмотренная в сочинении Аристотеля «Органон», принята и нашла широкое применение в современной науке и математике. В Древней Греции логика была известна как диалектика или аналитика.

В дальнейшем логика Аристотеля была развита исламскими и затем средневековыми европейскими логиками, и наибольшего подъёма достигла в середине XIV века. С XIV века до начала XIX века логика находилась в упадке, историки логики считают этот период непродуктивным.[1]

Логика была возрождена в середине XIX века и успешно трансформировалась в строгую и формальную дисциплину, идеальным вариантом которой были точные методы доказательства, используемые в математике. Появление современнойматематической логики является наиболее значительным событием в истории логики за последние две тысячи лет и, возможно, одним из наиболее важных и примечательных событий в интеллектуальной истории человечества.

Прогресс в истории логики первой половины XX века связан, в частности, с работами Гёделя и Тарского, и оказал значительное влияние на аналитическую философию и философскую логику, в особенности с 1950-х гг., благодаря развитию новых разделов: модальная логика, темпоральная логика, деонтическая логика и релевантная логика.

Предистория:

Правильные рассуждения можно встретить на протяжении всего периода ранней истории человечества. С другой стороны попутно происходило изучение принципов правильного мышления, вывода и доказательства. Вероятно, идея доказательства утверждений впервые возникла в связи с геометрией, которая буквально означает «измерение земли». В частности, древние египтяне эмпирическим путём получили некоторые геометрические знания, например, формулу для расчёта объёмаусечённой пирамиды. Другое происхождение связывают с Вавилонией. Эсагиль-кин-апли в медицинском Руководстве по диагностике XI века до н. э. приводит множество аксиом и допущений. Вавилонские астрономы VIII и VII веков до н. э. применяли внутреннюю логику внутри их предсказательной планетарной системы — важный вклад в философию науки.

Логика Аристотеля:


Логика Аристотеля, в ЕГО частности теория силлогизма, имела огромное влияние на западную мысль. Его указывают родоначальником логики как дисциплины [3]. ЕГО труды по логике, называемые Органон, представляют самое раннее исследование формальной логики и началом традиции, преемственность которой прослеживается до современности. Точная датировка затруднительна, но предположительно порядок работ Аристотеля по логике следующий:

· Категории, изучение десяти основных категорий.

· Топика (с приложением О софистических опровержениях), диалектические дискуссии.

· Об истолковании, анализ простых категорических суждений.

· Первая аналитика, формальный анализ валидных форм рассуждений или силлогизмов.

· Вторая аналитика, изучение научных доказательств.

Эти труды имеют выдающееся значение для истории логики. Аристотель был первым логиком, Который провести попытался системный анализ логического синтаксиса. В Категориях он классифицирует все возможные виды Того, что быть Может субъектом и предикатом суждения. Послужило основой это ЕГО философского сочинения Метафизика. Он первый последовательно применяет законы противоречия и исключённого третьего. Он первый показывает принципы аргументации, лежащие в основе логических форм умозаключений, с помощью переменных (основоположник формальной логики); исследует отношение зависимости, Необходимые Анджелес характеризуют Условия вывода и различает валидность Этих отношений. В: Первой аналитике содержится изложение ЕГО силлогистики и Клуб Впервые в истории примененены три важнейших принципа: применение переменных, чисто формальное рассмотрение и использование аксиоматической системы. В Сочинениях топика и '' О софистических опровержениях ТАКЖЕ рассматривается неформальная логика (например, исследование логических ошибок).

Современность:


В конце XIX — начале XX веков были заложены основы т. н. математической, или символической, логики. Её суть заключается в том, что для обнаружения истинностного значения выражений естественного языка можно применять математические методы. Именно использование символической логики отличает современную логическую науку от традиционной.

Огромный вклад в развитие символической логики внесли такие учёные, как Дж. Буль, О. де Морган, Г. Фреге, Ч. Пирс и др. В XX веке математическая логика оформилась в качестве самостоятельной дисциплины в рамках логической науки.

Начало XX века ознаменовалось становлением идей неклассической логики, многие важные положения которой были предвосхищены и/или заложены Н. А. Васильевым и И. Е. Орловым.

В середине XX века развитие вычислительной техники привело к появлению логических элементов, логических блоков и устройств вычислительной техники, что было связано с дополнительной разработкой таких областей логики, как проблемы логического синтеза, логическое проектирование и логического моделирования логических устройств и средств вычислительной техники.

В 80-х годах XX века начались исследования в области искусственного интеллекта на базе языков и систем логического программирования. Началось и создание экспертных систем с использованием и развитием автоматического доказательства теорем, а также методов доказательного программирования для верификации алгоритмов и программ для ЭВМ.

В 80-е годы начались также изменения в образовании. Появление персональных компьютеров в средних школах привело к созданию учебников информатики с изучением элементов математической логики для объяснения логических принципов работы логических схем и устройств вычислительной техники, а также принципов логического программирования для компьютеров пятого поколения и разработка учебников информатики с изучением языка исчисления предикатов для проектирования баз знаний.

Основы Логики:


Логика – наука о законах и формах мышления

Высказывание (суждение) – некоторое предложение, которое может быть истинно (верно) или ложно.

Утверждение – суждение, которое требуется доказать или опровергнуть.

Рассуждение – цепочка высказываний или утверждений, определенным образом связанных друг с другом.

Умозаключение – логическая операция, в результате которой из одного или нескольких данных суждений получается (выводится) новое суждение.

Логическое выражение – запись или устное утверждение, в которое, наряду с постоянными, обязательно входят переменные величины (объекты). В зависимости от значений этих переменных логическое выражение может принимать одно из двух возможных значений: ИСТИНА (логическая 1) или ЛОЖЬ (логический 0).

Сложное логическое выражение – логическое выражение, составленное из одного или нескольких простых (или сложных) логических выражений, связанных с помощью логических операций.

Логические операции и таблицы истинности

F = A & B.

Логическое умножение КОНЪЮНКЦИЯ - это новое сложное выражение будет истинным только тогда, когда истинны оба исходных простых выражения. Конъюнкция определяет соединение двух логических выражений с помощью союза И.

Big image

F = A + B

Логическое сложение – ДИЗЪЮНКЦИЯ - это новое сложное выражение будет истинным тогда и только тогда, когда истинно хотя бы одно из исходных (простых) выражений. Дизъюнкция определяет соединение двух логических выражений с помощью союза ИЛИ

Big image

Логическое отрицание : ИНВЕРСИЯ - если исходное выражение истинно, то результат отрицания будет ложным, и наоборот, если исходное выражение ложно, то результат отрицания будет истинным/ Данная операция означает, что к исходному логическому выражению добавляется частица НЕ или слова НЕВЕРНО, ЧТО

Big image
Логическое следование: ИМПЛИКАЦИЯ - связывает два простых логических выражения, из которых первое является условием (А), а второе (В)– следствием из этого условия. Результатом ИМПЛИКАЦИИ является ЛОЖЬ только тогда, когда условие А истинно, а следствие В ложно. Обозначается символом "следовательно" и выражается словами ЕСЛИ … ,
Big image
Логическая равнозначность: ЭКВИВАЛЕНТНОСТЬ - определяет результат сравнения двух простых логических выражений А и В. Результатом ЭКВИВАЛЕНТНОСТИ является новое логическое выражение, которое будет истинным тогда и только тогда, когда оба исходных выражения одновременно истинны или ложны. Обозначается символом "эквивалентности
Big image

Порядок выполнения логических операций в сложном логическом выражении


1. инверсия

2. конъюнкция

3. дизъюнкция

4. импликация

5. эквивалентность

Для изменения указанного порядка выполнения операций используются скобки.

Построение таблиц истинности для сложных выражений:


Количество строк = 2n + две строки для заголовка (n - количество простых высказываний)

Количество столбцов = количество переменных + количество логических операций

При построении таблицы надо учитывать все возможные сочетания логических значений 0 и 1 исходных выражений. Затем – определить порядок действий и составить таблицу с учетом таблиц истинности основных логических операций.

Логические законы

Законы де Моргана : Важное значение для выполнения преобразований
Big image
Закон Тождества: Всякое высказывание тождественно самому себе

А=А

Закон не противоречия : высказывание не может быть одновременно и ложным и истинным. Если высказывание А истинно, то его отрицание не А должно быть ложным
Big image
Закон исключенного третьего: высказывание модет быть либо истинным либо ложным. Это означает, что результат логического сложения высказывания и его отрицания всегда принимает значение "истина"
Big image
Закон двойного отрицания: Если дважды отрицать некоторые высказывания, то в результате мы получим исходное высказывание
Big image
Закон коммутативности: в обычной алгебре слагаемые и множители можно поменять местами. В алгебре высказываний можно менять местами логические переменные при операциях логического умножения и логического сложения
Big image
Закон ассоциативности: если в в логическом выражении используется только операция логического умножения или только операция логического сложения, то можно пренебрегать скобками или произвольно их расставлять
Big image
Закон дистрибутивности: в отличие от обычной алгебры , где за скобки можно выносить только общие множители, в алгебре высказываний можно вынести за скобки как общие множители так и общие слагаемые
Big image