Lets Dive Into Arthropods!

Arthropod Dissection Pre-AP Biology April 07,2014 - Guzman

The Fantastic Arthropoda

An arthropod is an invertebrate animal having an exoskeleton, a segmented body, and jointed appendages. Arthropods are members of the phylum Arthropoda, and include the insects, arachnids, and crustaceans. They are in the kingdom Animalia, and subphylum Ecdysozoa.

Construction of an Arthropod

Arthropods are characterized by their jointed limbs and cuticles, which are mainly made of α-chitin; the cuticles of crustaceans are also biomineralized with calcium carbonate. The rigid cuticle inhibits growth, so arthropods replace it periodically by moulting. The arthropod body plan consists of repeated segments, each with a pair of appendages. Their versatility has enabled them to become the most species-rich members of all ecological guilds in most environments. They have over a million described species, making up more than 80% of all described living animal species, some of which, unlike most animals, are very successful in dry environments. They range in size from microscopic plankton up to forms a few meters long. Arthropods' primary internal cavity is a hemocoel, which accommodates their internal organs, and through which their haemolymph - analogue of blood - circulates; they have open circulatory systems. Like their exteriors, the internal organs of arthropods are generally built of repeated segments. Their nervous system is "ladder-like", with paired ventral nerve cords running through all segments and forming paired ganglia in each segment. Their heads are formed by fusion of varying numbers of segments, and their brains are formed by fusion of the ganglia of these segments and encircle the esophagus. The respiratory and excretory systems of arthropods vary, depending as much on their environment as on the subphylum to which they belong.

Today's Objectives

Students will be learning about the external and internal anatomy of an Arthropod. Students will focus on the organs, structures, and functions of the skeletal system. Students will also understand the ecological role of the Arthropod.

Anatomy of an arthropod

Arthropod exoskeletons are made of cuticle, a non-cellular material secreted by the epidermis. Their cuticles vary in the details of their structure, but generally consist of three main layers: the epicuticle, a thin outer waxy coat that moisture-proofs the other layers and gives them some protection; the exocuticle, which consists of chitin and chemically hardened proteins; and the endocuticle, which consists of chitin and unhardened proteins. The exocuticle and endocuticle together are known as the procuticle. Each body segment and limb section is encased in hardened cuticle. The joints between body segments and between limb sections are covered by flexible cuticle. The exoskeletons of most aquatic crustaceans are biomineralized with calcium carbonate extracted from the water. Some terrestrial crustaceans have developed means of storing the mineral, since on land they cannot rely on a steady supply of dissolved calcium carbonate. Biomineralization generally affects the exocuticle and the outer part of the endocuticle. Two recent hypotheses about the evolution of biomineralization in arthropods and other groups of animals propose that it provides tougher defensive armor, and that it allows animals to grow larger and stronger by providing more rigid skeletons; and in either case a mineral-organic composite exoskeleton is cheaper to build than an all-organic one of comparable strength. Although all arthropods use muscles attached to the inside of the exoskeleton to flex their limbs, some still use hydraulic pressure to extend them, a system inherited from their pre-arthropod ancestors.

Arthropod bodies are also segmented internally, and the nervous, muscular, circulatory, and excretory systems have repeated components. Arthropods come from a lineage of animals that have a coelom, a membrane-lined cavity between the gut and the body wall that accommodates the internal organs. The strong, segmented limbs of arthropods eliminate the need for one of the coelom's main ancestral functions, as a hydrostatic skeleton, which muscles compress in order to change the animal's shape and thus enable it to move. Hence the coelom of the arthropod is reduced to small areas around the reproductive and excretory systems. Its place is largely taken by a hemocoel, a cavity that runs most of the length of the body and through which blood flows.

Arthropods have open circulatory systems, although most have a few short, open-ended arteries. In chelicerates and crustaceans, the blood carries oxygen to the tissues, while hexapods use a separate system of tracheae. The most common respiratory pigment in arthropods is copper-based hemocyanin; this is used by many crustaceans and a few centipedes.

The heart is typically a muscular tube that runs just under the back and for most of the length of the hemocoel. It contracts in ripples that run from rear to front, pushing blood forwards. Sections not being squeezed by the heart muscle are expanded either by elastic ligaments or by small muscles, in either case connecting the heart to the body wall. Along the heart run a series of paired ostia, non-return valves that allow blood to enter the heart but prevent it from leaving before it reaches the front.

Arthropods have a wide variety of respiratory systems. Small species often do not have any, since their high ratio of surface area to volume enables simple diffusion through the body surface to supply enough oxygen.

Living arthropods have paired main nerve cords running along their bodies below the gut, and in each segment the cords form a pair of ganglia from which sensory and motor nerves run to other parts of the segment. Although the pairs of ganglia in each segment often appear physically fused, they are connected by commissures, which give arthropod nervous systems a characteristic "ladder-like" appearance. The brain is in the head, encircling and mainly above the esophagus. It consists of the fused ganglia of the acron and one or two of the foremost segments that form the head – a total of three pairs of ganglia in most arthropods, but only two in chelicerates, which do not have antennae or the ganglion connected to them. The ganglia of other head segments are often close to the brain and function as part of it. In insects these other head ganglia combine into a pair of subesophageal ganglia, under and behind the esophagus. Spiders take this process a step further, as all the segmental ganglia are incorporated into the subesophageal ganglia, which occupy most of the space in the cephalothorax.

There are two different types of arthropod excretory systems. In aquatic arthropods, the end-product of biochemical reactions that metabolise nitrogen is ammonia, which is so toxic that it needs to be diluted as much as possible with water. The ammonia is then eliminated via any permeable membrane, mainly through the gills. All crustaceans use this system, and its high consumption of water may be responsible for the relative lack of success of crustaceans as land animals. Various groups of terrestrial arthropods have independently developed a different system: the end-product of nitrogen metabolism is uric acid, which can be excreted as dry material; the Malpighian tubule system filters the uric acid and other nitrogenous waste out of the blood in the hemocoel, and dumps these materials into the hindgut, from which they are expelled as feces. Most aquatic arthropods and some terrestrial ones also have organs called nephridia, which extract other wastes for excretion as urine.

Reproduction of Arthropods

A few arthropods, such as barnacles, are hermaphroditic, that is, each can have the organs of both sexes. However, individuals of most species remain of one sex their entire lives. All known terrestrial arthropods use internal fertilization. Some crustaceans use modified appendages to transfer the sperm directly to the female. However, most male terrestrial arthropods produce spermatophores, waterproof packets of sperm, which the females take into their bodies. Most arthropods lay eggs, but scorpions are viviparous: they produce live young after the eggs have hatched inside the mother, and are noted for prolonged maternal care. Newly born arthropods have diverse forms, and insects alone cover the range of extremes. Some hatch as apparently miniature adults, and in some cases, such as silverfish, the hatchlings do not feed and may be helpless until after their first moult.

Classification of Arthropods

Arthropods are typically classified into five subphyla, of which one is extinct:

1. Trilobites are a group of formerly numerous marine animals that disappeared in the Permian–Triassic extinction event, though they were in decline prior to this killing blow, having been reduced to one order in the Late Devonian extinction.

2. Chelicerates include spiders, mites, scorpions and related organisms. They are characterised by the presence of chelicerae, appendages just above / in front of the mouth. Chelicerae appear in scorpions as tiny claws that they use in feeding, but those of spiders have developed as fangs that inject venom.

3. Myriapods comprise millipedes, centipedes, and their relatives and have many body segments, each bearing one or two pairs of legs. They are sometimes grouped with the hexapods.

4. Crustaceans are primarily aquatic (a notable exception being woodlice) and are characterised by having biramous appendages. They include lobsters, crabs, barnacles, crayfish, shrimp and many others.

5. Hexapods comprise insects and three small orders of insect-like animals with six thoracic legs. They are sometimes grouped with the myriapods, in a group called Uniramia, though genetic evidence tends to support a closer relationship between hexapods and crustaceans.

Human Interaction

Crustaceans such as crabs, lobsters, crayfish, shrimp and prawns have long been part of human cuisine, and are now farmed on a large commercial scale. Insects and their grubs are at least as nutritious as meat, and are eaten both raw and cooked in many cultures, excluding most European, Hindu and Islamic cultures. Cooked tarantulas are considered a delicacy in Cambodia, and by the Piaroa Indians of southern Venezuela, after the highly irritant hairs – the spider's main defense system – are removed. Humans also unintentionally eat arthropods in other foods, and food safety regulations lay down acceptable contamination levels for different kinds of food material. The intentional cultivation of arthropods and other small animals for human food, referred to as mini livestock, is now emerging in animal husbandry as an ecologically sound concept.

The Skeletal System

A typical arthropod exoskeleton is a multi-layered structure with four functional regions: epicuticle, procuticle, epidermis and basement membrane. The epicuticle is a multi-layered external barrier that, especially in terrestrial arthropods, acts as a barrier against desiccation. The strength of the exoskeleton is provided by the underlying procuticle, which is in turn secreted by the epidermis. Arthropod cuticle is a biological composite material, consisting of two main portions: fibrous chains of alpha-chitin within a matrix of silk-like and globular proteins, of which the most well-known is the rubbery protein called resilin. Although the cuticle is relatively soft when first secreted, it soon hardens in a poorly understood process that involves sclerotization and/or tanning mediated by hydrophobic chemicals called phenolics. Different types of interaction between the proteins and chitin leads to varying mechanical properties of the exoskeleton.

The arthropod exoskeleton is typically divided into different functional units to allow flexibility in an often otherwise rigid structure. For example, the head is a fused capsule; and the trunk is often divided into a series of articulating sclerites called tergites. In addition, the characteristic limbs of arthropods need to be jointed. The internal surface of the exoskeleton is often elaborated into a set of specialised structures called apodemes that allow the attachment of muscles. Such endoskeletal components of the arthropod skeleton can be highly complex, as in crabs and lobsters.