The Sun

Big image

The core

The Sun's core is the central region where nuclear reactions consume hydrogen to form helium. These reactions release the energy that ultimately leaves the surface as visible light. These reactions are highly sensitive to temperature and density
Big image

The Radioactive

The Sun's radiative zone is the section of the solar interior between the innermost core and the outer convective zone. In the radiative zone, energy generated by nuclear fusion in the core moves outward as electromagnetic radiation. In other words, the energy is conveyed by photons
Big image

Convective Zone

A region of turbulent plasma between a star's core and its visible photosphere at the surface, through which energy is transferred by convection. In the convection zone, hot plasma rises, cools as it nears the surface, and falls to be heated and rise again.
Big image

Photosphere

The photosphere is the visible surface of the Sun that we are most familiar with. Since the Sun is a ball of gas, this is not a solid surface but is actually a layer about 100 km thick (very, very, thin compared to the 700,000 km radius of the Sun)
Big image

Chromospere

The chromosphere (literally, "sphere of color") is the second of the three main layers in the Sun's atmosphere and is roughly 2,000 kilometers deep. It sits just above the photosphere and just below the solar transition region.
Big image

Corona

A corona (Latin, 'crown') is an aura of plasma that surrounds the sun and other celestial bodies. The Sun's corona extends millions of kilometres into space and is most easily seen during a total solar eclipse, but it is also observable with a coronagraph.
Big image

sunspots

Sunspots are temporary phenomena on the photosphere of the Sun that appear visibly as dark spots compared to surrounding regions. They correspond to concentrations of magnetic field flux that inhibit convection and result in reduced surface temperature compared to the surrounding photosphere.
Big image

Prominence

A prominence is a large, bright, gaseous feature extending outward from the Sun's surface, often in a loop shape. Prominences are anchored to the Sun's surface in the photosphere, and extend outwards into theSun's corona.
Big image
A solar flare is a sudden flash of brightness observed near the Sun's surface. It involves a very broad spectrum of emissions, requiring an energy release of up to 6 × 1025 joules of energy (roughly the equivalent of 160,000,000,000 megatons of TNT, over 25,000 times more energy than released from the impact of Comet Shoemaker–Levy 9 with Jupiter). Flares are often, but not always, accompanied by a spectacular coronal mass ejection.The flare ejects clouds of electrons, ions, and atoms through the corona of the sun into space. These clouds typically reach Earth a day or two after the event. The term is also used to refer to similar phenomena in other stars, where the term stellar flare applies.
Big image

aurora

An aurora, sometimes referred to as a polar light, is a natural light display in the sky, predominantly seen in the high latitude (Arctic and Antarctic) regions. Auroras are produced when the magnetosphere is sufficiently disturbed by the solar wind that the trajectories of charged particles in both solar wind and magnetospheric plasma, mainly in the form of electrons and protons, precipitate them into the upper atmosphere (thermosphere/exosphere), where their energy is lost. The resulting ionization and excitation of atmospheric constituents emits light of varying colour and complexity. The form of the aurora, occurring within bands around both polar regions, is also dependent on the amount of acceleration imparted to the precipitating particles. Precipitating protons generally produce optical emissions as incident hydrogen atoms after gaining electrons from the atmosphere. Proton auroras are usually observed at lower latitudes. Different aspects of an aurora are elaborated in various sections below.